Материалы

Мышьяк металл или нет. Химические свойства мышьяка. Нахождение в природе мышьяка

Мышьяк (лат. arsenicum), as, химический элемент v группы периодической системы Менделеева, атомный номер 33, атомная масса 74,9216; кристаллы серо-стального цвета. Элемент состоит из одного устойчивого изотопа 75 as.

Историческая справка. Природные соединения М. с серой (аурипигмент as 2 s 3 , реальгар as 4 s 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов М. - оксид М. (iii) as 2 o 3 («белый М.»). Название arsenik o n встречается уже у Аристотеля; оно произведено от греч. a rsen - сильный, мужественный и служило для обозначения соединений М. (по их сильному действию на организм). Русское название, как полагают, произошло от «мышь» (по применению препаратов М. для истребления мышей и крыс). Получение М. в свободном состоянии приписывают Альберту Великому (около 1250). В 1789 А. Лавуазье включил М. в список химических элементов.

Распространение в природе. Среднее содержание М. в земной коре (кларк) 1,7 · 10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения М. летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с s, se, sb, fe, co, ni, cu и др. элементами). При извержении вулканов М. в виде своих летучих соединений попадает в атмосферу. Так как М. многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (as 5+) и арсениты (as 3+). Это редкие минералы, встречающиеся только на участках месторождений М. Ещё реже встречается самородный М. и минералы as 2+ . Из многочисленных минералов М. (около 180) основное промышленное значение имеет лишь арсенопирит feass.

Малые количества М. необходимы для жизни. Однако в районах месторождении М. и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление М. особенно характерно для ландшафтов степей и пустынь, в почвах которых М. малоподвижен. Во влажном климате М. легко вымывается из почв.

В живом веществе в среднем 3 · 10 -5 % М., в реках 3 · 10 -7 %. М., приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1 · 10 -7 % М., но зато в глинах и сланцах 6,6 · 10 -4 %. Осадочные железные руды, железомарганцевые конкреции часто обогащены М.

Физические и химические свойства. М. имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемый металлический, или серый, М. (a -as) - серо-стальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, т. к. покрывается тонкой плёнкой as 2 o 3 . Кристаллическая решётка серого М. ромбоэдрическая (а = 4,123 a , угол a = 54°10", х = 0,226), слоистая. Плотность 5,72 г/см 3 (при 20°c), удельное электрическое сопротивление 35 · 10 -8 ом ? м , или 35 · 10 -6 ом ? см , температурный коэффициент электросопротивления 3,9 · 10 -3 (0°-100 °c), твёрдость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Моосу); М. диамагнитен. Под атмосферным давлением М. возгоняется при 615 °c не плавясь, т. к. тройная точка a -as лежит при 816 °c и давлении 36 ат . Пар М. состоит до 800 °c из молекул as 4 , выше 1700 °c - только из as 2 . При конденсации пара М. на поверхности, охлаждаемой жидким воздухом, образуется жёлтый М. - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор . При действии света или при слабом нагревании он переходит в серый М. Известны также стекловидно-аморфные модификации: чёрный М. и бурый М., которые при нагревании выше 270°c превращаются в серый М.

Конфигурация внешних электронов атома М. 3 d 10 4 s 2 4 p 3 . В соединениях М. имеет степени окисления + 5, + 3 и – 3. Серый М. значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400°c М. горит, образуя as 2 o 3 . С галогенами М. соединяется непосредственно; при обычных условиях asf 5 - газ; asf 3 , ascl 3 , asbr 3 - бесцветные легко летучие жидкости; asi 3 и as 2 l 4 - красные кристаллы. При нагревании М. с серой получены сульфиды: оранжево-красный as 4 s 4 и лимонно-жёлтый as 2 s 3 . Бледно-жёлтый сульфид as 2 s 5 осаждается при пропускании h 2 s в охлаждаемый льдом раствор мышьяковой кислоты (или её солей) в дымящей соляной кислоте: 2h 3 aso 4 + 5h 2 s = as 2 s 5 + 8h 2 o; около 500°c он разлагается на as 2 s 3 и серу. Все сульфиды М. нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси hno 3 + hcl, hcl + kclo 3) переводят их в смесь h 3 aso 4 и h 2 so 4 . Сульфид as 2 s 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой h 3 ass 3 и тиомышьяковой h 3 ass 4 . С кислородом М. даёт окислы: оксид М. (iii) as 2 o 3 - мышьяковистый ангидрид и оксид М. (v) as 2 o 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на М. или его сульфиды, например 2as 2 s 3 + 9o 2 = 2as 2 o 3 + 6so 2 . Пары as 2 o 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле as 4 o 6: выше 1800°c пар состоит из as 2 o 3 . В 100 г воды растворяется 2,1 г as 2 o 3 (при 25°c). Оксид М. (iii) - соединение амфотерное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой h 3 aso 3 и метамышьяковистой haso 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. as 2 o 3 и арсениты обычно бывают восстановителями (например, as 2 o 3 + 2i 2 + 5h 2 o = 4hi + 2h 3 aso 4), но могут быть и окислителями (например, as 2 o 3 + 3c = 2as + 3co).

Оксид М. (v) получают нагреванием мышьяковой кислоты h 3 aso 4 (около 200°c). Он бесцветен, около 500°c разлагается на as 2 o 3 и o 2 . Мышьяковую кислоту получают действием концентрированной hno 3 на as или as 2 o 3 . Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой h 3 aso 4 , метамышьяковой haso 3 , и пиромышьяковой h 4 as 2 o 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами М. по большей части образует соединения (арсениды ).

Получение и применение . М. получают в промышленности нагреванием мышьякового колчедана:

feass = fes + as

или (реже) восстановлением as 2 o 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединённых с приёмником для конденсации паров М. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих М. При окислительном обжиге образуются пары as 2 o 3 , которые конденсируются в уловительных камерах. Сырой as 2 o 3 очищают возгонкой при 500-600°c. Очищенный as 2 o 3 служит для производства М. и его препаратов.

Небольшие добавки М. (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (М. повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; М. несколько увеличивает твёрдость свинца). Как частичный заменитель сурьмы М. входит в состав некоторых баббитов и типографских сплавов.

Чистый М. не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород . Из применяемых на производстве соединений М. наиболее токсичен мышьяковистый ангидрид. Примесь М. содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом so 2 , всегда образуется as 2 o 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества as 2 o 3 . Чистый М., хотя и не ядовит, но при хранении на воздухе всегда покрывается налётом ядовитого as 2 o 3 . При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь М., т. к. при этом образуется мышьяковистый водород.

С. А. Погодин.

М. в организме. В качестве микроэлемента М. повсеместно распространён в живой природе. Среднее содержание М. в почвах 4 · 10 -4 %, в золе растений - 3 · 10 -5 %. Содержание М. в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание М. в теле человека 0,08-0,2 мг/кг . В крови М. концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причём в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много М. содержится в лёгких и селезёнке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главным образом гипофизе), половых железах и др. В тканях М. находится в основной белковой фракции, значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. М. участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Соединения М. применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ.

М. в медицине. Органические соединения М. (аминарсон, миарсенол, новарсенал, осарсол) применяют, главным образом, для лечения сифилиса и протозойных заболеваний. Неорганические препараты М. - натрия арсенит (мышьяковокислый натрий), калия арсенит (мышьяковистокислый калий), мышьяковистый ангидрид as 2 o 3 , назначают как общеукрепляющие и тонизирующие средства. При местном применении неорганические препараты М. могут вызывать некротизирующий эффект без предшествующего раздражения, отчего этот процесс протекает почти безболезненно; это свойство, которое наиболее выражено у as 2 o 3 , используют в стоматологии для разрушения пульпы зуба. Неорганические препараты М. применяют также для лечения псориаза.

Полученные искусственно радиоактивные изотопы М. 74 as (t 1 / 2 = 17,5 сут ) и 76 as (t 1 / 2 = 26,8 ч ) используют в диагностических и лечебных целях. С их помощью уточняют локализацию опухолей мозга и определяют степень радикальности их удаления. Радиоактивный М. используют иногда при болезнях крови и др.

Согласно рекомендациям Международной комиссии по защите от излучений, предельно допустимое содержание 76 as в организме 11 мккюри . По санитарным нормам, принятым в СССР, предельно допустимые концентрации 76 as в воде и открытых водоёмах 1 · 10 -7 кюри/л , в воздухе рабочих помещений 5 · 10 -11 кюри/л . Все препараты М. очень ядовиты. При остром отравлении ими наблюдаются сильные боли в животе, понос, поражение почек; возможны коллапс, судороги. При хроническом отравлении наиболее часты желудочно-кишечные расстройства, катары слизистых оболочек дыхательных путей (фарингит, ларингит, бронхит), поражения кожи (экзантема, меланоз, гиперкератоз), нарушения чувствительности; возможно развитие апластической анемии. При лечении отравлений препаратами М. наибольшее значение придают унитиолу.

Меры предупреждения производственных отравлений должны быть направлены прежде всего на механизацию, герметизацию и обеспыливание технологического процесса, на создание эффективной вентиляции и обеспечение рабочих средствами индивидуальной защиты от воздействия пыли. Необходимы регулярные медицинские осмотры работающих. Предварительные медицинские осмотры производят при приёме на работу, а для работающих - раз в полгода.

Лит.: Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963, с. 700-712; Погодин С. А., Мышьяк, в кн.: Краткая химическая энциклопедия, т. 3, М., 1964; Вредные вещества в промышленности, под общ. ред. Н. В. Лазарева, 6 изд., ч. 2, Л., 1971.

cкачать реферат

Мышьяк

МЫШЬЯ́К -а́; м.

1. Химический элемент (Аs) - твёрдое ядовитое вещество блестяще-серого цвета, входящее в состав многих минералов. Окисел мышьяка. Получение мышьяка.

2. Лекарственный препарат, содержащий это вещество или его соединения (применяется как общеукрепляющее, противомикробное и т.п. средство). Лечение мышьяком. Воздействие мышьяка на нервные окончания.

Мышьяко́вый, -ая, -ое. М-ые соединения. М-ая кислота. М. препарат. М-ое отравление. Мышья́чный, -ая, -ое. Устар. Мышьяко́вистый, -ая, -ое. Русское название этого элемента произошло от слова "мышь", т.к. мышьяк широко применялся при уничтожении крыс и мышей.

мышья́к

(лат. Arsenicum), химический элемент V группы периодической системы. Русское название от «мышь» (препараты мышьяка применялись для истребления мышей и крыс). Образует несколько модификаций. Обычный мышьяк (так называемый металлический, или серый) - хрупкие кристаллы с серебристым блеском; плотность 5,74 г/см 3 , при 615°C возгоняется. На воздухе окисляется и тускнеет. Добывают из сульфидных руд (минералы арсенопирит, аурипигмент, реальгар). Компонент сплавов с медью, свинцом, оловом и др. и полупроводниковых материалов. Соединения мышьяка физиологически активны и ядовиты; служили одними из первых инсектицидов (см., например, Арсенаты металлов). Неорганические соединения мышьяка применяются в медицине как общеукрепляющие, тонизирующие средства, органические - как противомикробные и противопротозойные (при лечении сифилиса, амёбиаза и др.).

МЫШЬЯК

МЫШЬЯ́К (лат. Arsenicum, от греческого arsen - сильный), As (читается «арсеникум»), химический элемент c атомным номером 33, атомная масса 74,9216. В природе встречается один стабильный изотоп 75 As. Расположен в VА группе в 4 периоде периодической системы элементов. Электронная конфигурация внешнего слоя 4s 2 p 3 . Степени окисления +3, +5, –3 (валентности III, V).
Радиус атома 0,148 нм. Радиус иона Аs 3- 0,191 нм, иона As 3+ 0,072 нм (координационное число 4), иона As 5+ 0,047 нм (6). Энергии последовательной ионизации 9,82, 18,62, 28,35, 50,1 и 62,6 эВ. электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,1. Неметалл.
Историческая справка
Мышьяк известен человечеству с древнейших времен, когда использовались в качестве красителей минералы аурипигмент (см. АУРИПИГМЕНТ) As 2 S 3 и реальгар (см. РЕАЛЬГАР) As 4 S 4 (упоминания о них встречаются у Аристотеля) (см. АРИСТОТЕЛЬ) .
Алхимики при прокаливании сульфидов мышьяка на воздухе отмечали, что образование так называемого белого оксида As 2 O 3:
2As 2 S 3 +9О 2 =2As2O 3 +6SO 2
Этот оксид - сильный яд, он растворяется в воде и в вине.
Впервые As в свободном виде получил немецкий алхимик А. фон Больдштндт в 13 веке прогреванием оксида мышьяка с углем:
As 2 O 3 +3С=2As+3СО
Для изображения мышьяка использовали знак извивающейся змеи с раскрытой пастью.
Нахождение в природе
Мышьяк - рассеянный элемент. Содержание в земной коре 1,7·10 –4 % по массе. Известно 160 мышьяксодержащих минералов. В самородном состоянии встречается редко. Минерал, имеющий промышленное значение - арсенопирит (см. АРСЕНОПИРИТ) FeAsS. As часто содержится в свинцовых, медных и серебряных рудах.
Получение
Обогащенную руду подвергают окислительному обжигу, затем сублимируют летучий As 2 O 3. . Этот оксид восстанавливают углеродом. Для очистки As его подвергают дистилляции в вакууме, затем переводят в летучий хлорид AsCl 3 , который восстанавливают водородом (см. ВОДОРОД) . Получаемый мышьяк содержит 10 -5 -10 -6 % примесей по массе.
Физические и химические свойства
Мышьяк - серое с металлическим блеском хрупкое вещество (a-мышьяк) с ромбоэдрической кристаллической решеткой, a = 0,4135 нм и a = 54,13°. Плотность 5,74 кг/дм 3 .
При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация - желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.
Расплавить As можно только в запаянных ампулах под давлением. Температура плавления 817°C при давлении его насыщенных паров 3,6МПа.
Структура серого мышьяка похожа на структуру серой сурьмы и по строению напоминает черный фосфор.
Мышьяк химически активен. При хранении на воздухе порошкообразный As воспламеняется с образованием кислотного оксида As 2 O 3 . Этот оксид в парах существует в виде димеров As 4 O 6 .
При осторожном обезвоживании мышьяковой кислоты H 3 AsO 4 получают высший кислотный оксид мышьяка As 2 O 5 , который при нагревании легко отдает кислород (см. КИСЛОРОД) , превращаясь в As 2 O 3 .
Оксиду As 2 O 3 отвечают существующие только в растворах ортомышьяковистая H 3 AsO 3 и метамышьяковистая слабые кислоты HAsO 2 . Их соли - арсенаты.
Разбавленная азотная кислота (см. АЗОТНАЯ КИСЛОТА) окисляет As до H 3 AsO 3 , концентрированная азотная кислота - до H 3 AsO 4 . Со щелочами As не реагирует, в воде растворяется.
При нагревании As и H 2 образуется газ арсин (см. МЫШЬЯКА ГИДРИД) AsH 3 . С фтором (см. ФТОР) и хлором (см. ХЛОР) As взаимодействует с самовоспламенением. При взаимодействии As с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) образуются хальгкогениды: (см. ХАЛЬКОГЕНИДЫ) As 2 S 5 , As 2 S 3 , As 4 S 4 , As 2 Se 3 , As 2 Te 3 , существующие в стеклообразном состоянии. Они являются полупроводниками.
Со многими металлами As образует арсениды (см. АРСЕНИДЫ) . Арсенид галлия GaAs и индия InAs - полупроводники (см. ПОЛУПРОВОДНИКИ) .
Известно большое число органических соединений мышьяка, в которых имеется химическая связь As - C: органоарсины R n AsH 3-n (n = 1,3), тетраорганодиарсины R 2 As - AsR 2 и другие.
Применение
As особой чистоты используется для синтеза полупроводниковых материалов. Иногда As добавляют к сталям как легирующую добавку.
В 1909 немецкий микробиолог П. Эрлих (см. ЭРЛИХ Пауль) получил «препарат 606», эффективное лекарство от малярии, сифилиса, возвратного тифа.
Физиологическое действие
Мышьяк и все его соединения ядовиты. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных растворов Na 2 S 2 O 3 . Промывание желудка, прием молока и творога; специфическое противоядие - унитиол. ПДК в воздухе для мышьяка 0,5мг/м 3 . Работают с мышьяком в герметичных боксах, используя защитную спецодежду. Из-за высокой токсичности соединения мышьяка использовались Германией как отравляющие вещества в Первую мировую войну.
На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "мышьяк" в других словарях:

    МЫШЬЯК - (Arsenum, Arsenium, Arseni cum), твердый металлоид, симв. As; ат. в. 74,96. В периодической системе элементов занимает по порядку 33 е место, в 5 м ряду V группы. Природные соединения М. с серой (реальгар и аурипигмент) были известны еще в… … Большая медицинская энциклопедия

    МЫШЬЯК - см. МЫШЬЯК (As). Поскольку мышьяк и его соединения широко применяются в народном хозяйстве, он содержится в сточных водах различных отраслей промышленности металлургической, химико фармацевтической, текстильной, стекольной, кожевенной, химической … Болезни рыб: Справочник

    Мышьяк - (неочищенный мышьяк) представляет собой твердое вещество, извлекаемое из природных арсенопиритов. Он существует в двух основных формах: а) обыкновенный, так называемый металлический мышьяк, в виде блестящих кристаллов стального цвета, хрупких, не … Официальная терминология

    - (символ As), ядовитый полуметаллический элемент пятой группы периодической таблицы; вероятно, был получен в 1250 г. Соединения, содержащие мышьяк, используют как отраву для грызунов, насекомых и как средство против сорняков. Они также применяются … Научно-технический энциклопедический словарь

    - (Arsenium), As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216; неметалл серого, желтого или черного цвета, tпл 817 шC, возгоняется при 615 шC. Мышьяк используют для получения полупроводниковых… … Современная энциклопедия

    Мышьяк - (Arsenium), As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216; неметалл серого, желтого или черного цвета, tпл 817 °C, возгоняется при 615 °C. Мышьяк используют для получения полупроводниковых… … Иллюстрированный энциклопедический словарь

    МЫШЬЯК - хим. элемент, символ As (лат. Arsenicum), ат. н. 33, ат. м. 74,92; неметалл, существует в нескольких аллотропных модификациях, плотность 5720 кг/м3. При обычных условиях наиболее химически стоек так называемый металлический, или серый, мышьяк.… … Большая политехническая энциклопедия

    - (лат. Arsenicum) As, химический элемент V группы периодической системы, атомный номер 33, атомная масса 74,9216. Русское название от мышь (препараты мышьяка применялись для истребления мышей и крыс). Образует несколько модификаций. Обычный мышьяк … Большой Энциклопедический словарь

    МЫШЬЯК, мышьяка, мн. нет, муж. 1. Химический элемент, твердое вещество, в больших дозах ядовитое, обычно входящее в состав разных минералов, употр. для химических, технических и медицинских целей. 2. Препарат этого вещества, прописываемый при… … Толковый словарь Ушакова

    Арсеник(ум) Словарь русских синонимов. мышьяк сущ., кол во синонимов: 12 арсеник (2) арсеникум … Словарь синонимов

    As (лат. Arsenicum, от греч. arsen, arren сильный, мощный; pyc. назв., возможно, от мышь, связано c применением препаратов M. для истребления мышей и крыс * a. arsenic; н. Arsen; ф. arsenic; и. arsenico), хим. элемент V группы периодич.… … Геологическая энциклопедия

Мышьяк (= Арсен) (As)

Основное оружие отравителей или сексуальный стимулятор?

Мышьяк относят к условно эссенциальным, иммунотоксическим для организма человека элементам.

С древних времен мышьяк был известен и как лекарство, и как яд . В Риме славились яды Локусты; в Венеции, например, при дворе держали специалистов–отравителей. И главным компонентом почти всех ядов был мышьяк. Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены .

Симптомы мышьяковистого отравления – металлический привкус во рту, рвота, сильные боли в животе, позже – судороги, паралич, смерть.

В настоящее время установлено, что в малых дозах мышьяк необходим организму человека : он препятствует потере фосфора . Подобно тому, как витамин D регулирует фосфорно-кальциевый обмен, так мышьяк регулирует обмен фосфорный.
Но если концентрация мышьяка в продуктах питания или в почве переступит границу и приблизится к ядовитым дозам, то число смертельных случаев, вызванных раком гортани, глаз или белокровием, увеличится.

Суточная потребность организма человека – 12–15 мкг. Дефицит этого элемента в организме может развиться при его недостаточном поступлении (1 мкг/день и менее).

Всего в организме человека содержится около 15 мг мышьяка.

В организм человека соединения мышьяка попадают с питьевой и минеральной водой, виноградными винами и соками, морепродуктами, медицинскими препаратами, пестицидами и гербицидами.

Около 80% мышьяка всасывается в желудочно-кишечном тракте, 10% поступает через легкие и около 1% – через кожу.

Более 90% неорганических соединений мышьяка растворимы и хорошо абсорбируются. Далее неорганический мышьяк перемещается в печень, где он метилируется. Мышьяк накапливается в легких, печени, коже и тонком кишечнике. Депонируется мышьяк преимущественно в ретикуло-эндотелиальной системе, вероятно, в результате связи арсенита с SH–группами белков, которых относительно больше в этих тканях.
Через 24 часа после поступления из организма выводится 30% мышьяка с мочой и около 4% – с калом. Незначительные количества удаляются с потом, с выпавшими волосами, отслоившейся кожей и желчью.

Биологическая роль в организме человека . Известно, что мышьяк взаимодействует с тиоловыми группами белков, цистеином, глутатионом, липоевой кислотой. Возможно, мышьяк участвует в некоторых ферментативных реакциях. Как активатор ферментов мышьяк, вероятно, действует как заместитель фосфата. Как ингибитор, мышьяк, очевидно, реагирует с сульфгидрильными группами ферментов.

Мышьяк влияет на окислительные процессы в митохондриях, участвует в нуклеиновом обмене, т.е. имеет прямое отношение к синтезу белка, и необходим для синтеза гемоглобина, хотя и не входит в его состав.

Известно, что в организме млекопитающих мышьяк содержится в восстановленных формах As, NaAs 3+ , которые рассматривают как потенциальные стимуляторы образования металлотионеина с CdCl 2 .

Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм, способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка даже после окончания общего роста». Однако эти данные не нашли научного подтверждения.

В настоящее время исследуется влияние микродоз препаратов, содержащих мышьяк, как противораковых средств .

Синергисты и антагонисты мышьяка . Мышьяк может усиленно накапливаться в организме при недостаточности селена , и, тем самым, способствовать дефициту селена.
Антагонистами мышьяка является сера , фосфор , селен , витамины С, Е и аминокислоты.
Мышьяк тормозит усвоение организмом цинка , селена, аскорбиновой кислоты, витаминов А и Е, аминокислот.

Признаки недостаточности мышьяка : у человека – дерматиты, анемии; у животных – снижение роста и ненормальное воспроизведение, характеризующийся высокой перинатальной смертностью.
Другие известные симптомы: пониженная концентрация триглицеридов сыворотки крови.

Органами–мишенями при избыточном содержании мышьяка в организме является костный мозг, желудочно-кишечный тракт, кожа, легкие и почки. Мышьяк и все его соединения ядовиты в той или иной степени .

Мышьяк относится к так называемым «тиоловым ядам» . Механизм его токсичности связан с нарушением обмена серы, селена и фосфора. Токсичность мышьяка зависит от химических свойств и снижается в следующем порядке ряда: арсин AsH3 > неорганический As 3+ > органический As 3+ > неорганический As 5+ > соединения арсония AsH 4+ > элементарный мышьяк.

Существует достаточное количество доказательств канцерогенности неорганических соединений мышьяка . Высокий уровень смертности от рака легких зарегистрирован среди рабочих, занятых на производстве пестицидов, добыче золота и выплавке сплавов мышьяка с другими металлами, а также цветных металлов и особенно меди. В результате длительного употребления загрязненной мышьяком воды или лекарственных препаратов, нередко наблюдается развитие низкодифференцированного рака кожи (рак Боуэна). Вероятно, гемангиоэндотелиома печени также является арсенозависимой опухолью.

Небольшой избыток мышьяка в пищевом рационе вызывает в организме животных аномальную плодовитость , которая характеризуется значительным повышением половой активности и фертильности .

Широкую огласку получила техногенная экологическая катастрофа на юге Индии – из-за повышенного отбора воды из водоносных горизонтов мышьяк стал попадать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей.

Причины избытка мышьяка : избыточное поступление (постоянный контакт с мышьяком, загрязнение окружающей среды, курение, злоупотребление виноградным вином, длительное введение препаратов сальварсана), нарушение регуляции обмена мышьяка; усиленное накопление в организме мышьяка при недостаточности селена.

Основные проявления избытка мышьяка : раздражительность, головные боли, нарушение функций печени, развитие жирового гепатоза; кожные аллергические реакции, экзема, дерматит, зуд, язвы, депигментация кожи, ладонно-подошвенный гиперкератоз; конъюнктивит; поражения системы дыхания (фиброз, аллергозы, прорыв носовой перегородки, опухоли); поражения сосудов (в первую очередь – нижних конечностей – ендоангиит) нефропатия, увеличение риска развития новообразований кожи, печени, легких.

При остром отравлении мышьяком наблюдаются боли в животе, рвота, диарея, угнетение центральной нервной системы; развиваются: внутрисосудистый гемолиз, острая почечная, печеночная недостаточность, кардиогенный шок. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло успешно использовать соединения мышьяка (чаще всего – триоксид мышьяка) как смертельный яд.

На территориях, где в почве и воде имеется избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.

Мышьяк в малых дозах канцерогенен. Однако, в течение длительного времени (до середины 1950–х гг.) его использовали как лекарство, «улучшающие кровь». Такое использование в большинстве случаев приводило к развитию онкологических заболеваний.

Отдаленные последствия интоксикации мышьяком : снижение остроты слуха у детей, поражения нервной системы (энцефалопатии, нарушения речи, координации движений, судороги, психозы, полиневриты с болевым синдромом), нарушение трофики мышц, иммунодефицит.

Мышьяк необходим : при воспалительных процессах, вызванных протозойным и микробным поражением, при некоторых формах аллергии, при анемии, для повышения аппетита.
При отравлении человека или домашних животных (собак, птиц, свиней, коров) большими дозами селена мышьяк является противоядием. В экспериментах, проведенных на мышах, удалось уменьшить заболеваемость раком именно с помощью специально подобранных доз мышьяка. В воде мышьяка менее 10 мкг/л, однако, в некоторых регионах мира (Индия, Бангладеш, Тайвань, Мексика) содержание этого элемента достигает более 1 мг/л, что является причиной массовых хронических отравлений мышьяком и вызывает так называемую болезнь «черной стопы».

As - знаком человечеству с древнейших времен. Уже великий Аристотель упоминал химический элемент мышьяк в соединениях природного характера. Помимо этого, возможность выработки его сернистой разновидности, путем прокаливания, описывается у Диоскоридом в первом веке до нашей эры.

Позже, с этим элементом европейские сталелитейщики сталкивались при работе с рудой, с вкраплениями мышьяка. Очень пристально его изучали алхимики. Такое внимание объяснялся тем, что он также как сера и ртуть относился к стихийным элементам, являющимся основой всех металлов.

Способность мышьяка изменять цвет у медных сплавов на белый воспринималась профессорами современной химии как метаморфоза меди в серебро. Сейчас в мире ни одна лаборатория не обходится без этого элемента.

As присутствует везде. Даже выкуриваемая сигарета имеет его содержание что, помимо прочего, обуславливает вредность курения.

Открытие мышьяка на металлической основе относят к восемнадцатому веку, однако, способ получения элемента при помощи сублимимрования выявят только к концу семнадцатого. В этот период химик Шееле обнаружил мышьяковую кислоту, а также присутствующий в нем водород.

Изучение органических соединений с содержанием As берет начало у химика Каде. В середине восемнадцатого века он получает первое соединение органического характера на его основе – «Жидкость Каде». Структура была разобрана на составляющие только по прошествии восьмидесяти лет другим известным химиком Бунзеном.

До сих пор ведутся споры о том кому отдать пальму первенства открытия элемента в чистом виде. Это достижение причисляют в заслуги Альберта Великого. Как химический элемент он был признан Лавуазье в 1789 году.

Производство и области применения

Современные специалисты знают порядка двухсот минералов, в которых есть мышьяк. В подавляющем большинстве случаев его находят в руде, содержащей медь, серебро или свинец. Однако, минерал, представляющий главную значимость для промышленности – это колчедан с присутствием мышьяка.

Существует несколько способов выработки As в промышленных масштабах. Основным видом производства стал обжиг арсенопирита. Далее, из него восстанавливают оксид посредством антрацита.

Однако большая часть сырья при таком способе преобразуется в мышьяк белый.

Мышьяк в стоматологической сфере

Этот химический элемент не только яд, но и лекарство.

Применение мышьяка в сфере стоматологии в виде пасты не потеряло своей значимости благодаря яркому некротическому воздействию вещества на пораженные ткани.

Применяют его в следующих случаях:

  • Если пациент не воспринимает анестетики;
  • В случаях противопоказаний анестезирующих препаратов;
  • При излечении зубной боли у детей.

Основным условием при использовании его в стоматологических клиниках является – полностью сформированная корневая система. Поэтому «детский» вариант применения не столь распространён.

As в промышленности

Химический элемент мышьяк используется во многих сферах производства, среди которых можно выделить несколько основных направлений:

  • Металлургия;
  • Электротехника;
  • Обработка кожи;
  • Текстильная промышленность;
  • Пиротехника;
  • Стекольное производство.

Металлургия - применяют для легирования свинцовых сплавов, использующихся для изготовления дроби. Такой сплав с добавлением As при башенном варианте производства позволяет получать идеальные шарообразные формы дробинок. Помимо этого, его прочность возрастает.

Электротехника – мышьяк повышенной очистки (до 99%) применяют для изготовления ряда необходимых полупроводниковых компонентов.

Текстильная промышленность — используют в качестве красителя.

Кожевенная индустрия – в этой сфере его применяют в качестве реагента для уничтожения щетины на коже.

Пиротехника – минерал реальгар, являющийся моносульфидом мышьяка, используют для изготовления «греческого» огня, получающегося при возгорании смеси его с серой и селитрой. Такое химическое соединение дает ярко-белое пламя.

Стекольное дело - трехокись As позволяет получать продукцию имеющие нулевую прозрачность. Между тем маленькие добавления компонента, напротив, осветляют ее. Этот элемент до сих пор остался частью производства некоторых стекол.

Например:

  • «Венского»;
  • используемого в термометрах;
  • Имитации хрусталя.

Помимо этого, мышьяк применяют и в сельском хозяйстве в качестве удобрения. Домашний способ использования – это крысиный яд. Сейчас его изготавливают на основе иных компонентов.

Употребление в пищу строго запрещено.

Мышьяк в борьбе с лейкозом

Известная отравителям способность мышьяка убивать клетки сейчас используется в благородных целях. Этот химический элемент широко применяют для лечения онкологических заболеваний, в первую очередь при лейкозе.

Лейкемия характеризуется формированием опухоли вследствие репликации костного мозга. При отсутствии своевременного лечения, происходит увеличение ее объема. По этой причине возникают и разрастаются метастазы во всех частях организма. Вылечить даже тяжелую форму заболевания помогает элемент As.

Он эффективно нейтрализует чрезмерное разрастание лейкоцитов, стимулирует быстрое и качественное образование красных телец. Все это позволяет положительно влиять на восстановительный процесс. При лечении этим опасным элементом должна соблюдаться четкая инструкция. Ведь конечная цена – жизнь человека.

Возможные причины отравления

В наше время существует большой риск отравиться мышьяком. Никто из трудящихся на производстве не застрахован от разных неожиданностей. При использовании веществ на основе As в бытовых условиях также есть вероятность случайного попадания в организм человека.

Порой регистрируются факты преднамеренного отравления – уголовные преступления или суицид. Эти эпизоды можно отнести к острым формам интоксикации.

Есть вероятность отравиться и при лечебной практике воздействия небольших доз. Подобное отравление причисляют к хроническим случаям.

Отдельной группой интоксикации этим химическим элементом является подострая категория. Когда человека присутствует в местах где есть большая концентрация адамсита.

Его используют полицейские в некоторых странах при разгоне демонстраций. Боевые делятся на несколько категорий в том числе – стерниты. К ним и относится мышьяк. Такие вещества действуют раздражающе на дыхательный аппарат человека.

Действие мышьяка на организм

Элемент обладает способностью быстрого проникновения в организм человека, а вывести его очень сложно.

Отравление происходит следующими путями:

  • Кожные покровы;
  • Лёгкие;
  • Желудочно-кишечный тракт.

Стоит отметить, что неорганические компоненты мышьяка абсорбируются намного быстрее органики.

Наибольшую опасность для человека представляет арсин в газообразном состоянии, он не пахнет, поэтому для его промышленного производства приходится делать специальные добавки, имеющие стойкий чесночный «аромат». Также опасен мышьяковистый водород.

Отравление наступает очень быстро. В течение суток элемент способен поразить внутренние органы. Через две недели после интоксикации следы мышьяка можно обнаружить в ногтях и даже в костях.

Симптомы отравления мышьяком

Признаки заболевания могут разниться в зависимости от принятой дозы.

  • Острая форма

Характеризуется металлическим стойким привкусом во рту. Человек ощущает сильное горловое жжение, сопровождающееся спазмами. Кожа на теле приобретает синюшный оттенок, а ладони желтеют.

Резко падает артериальное давление, сопровождается мощными приступами головокружения. Помимо этого, отравившийся испытывает острую почечную и печёночную недостаточность.

Также у больного наблюдается диарея и начинает сильно болеть желудок. Понос характеризуется острой формой, вследствие чего организм очень быстро обезвоживается. В крайних случаях высока вероятность отека легких, парализация или коматозной состояние.

  • Подострая форма

Наблюдается крайне острая головная боль. Получают сильное раздражение все слизистые оболочки, в особенности глаза и дыхательные пути. Это приводит к «насморку», заложенности носа и слезотечению.

Пострадавший часто чихает и кашляет. Также не исключена сильная тошнота и даже рвота. После спазмов во рту остается послевкусие с металлическим оттенком.

  • Хроническая форма

Наступает усталость и общее недомогание организма. Конечности слабеют на фоне анемического состояния. Ухудшается периферическая чувствительность вплоть до полной потери. По коже «бегают мурашки» и ощущается ее онемение.

На теле появляются звездочки из сосудов и идет развитие устойчивого купероза.

При отсутствии соответствующего лечения весьма вероятны серьезные последствия вплоть до . Поскольку мышьяк обладает высокой канцерогенностью то отравление может подтолкнуть к развитию онкологии в организме.

Для человека, проглотившего триогсид мышьяка, смертельная доза составит объем от 50 до 340 миллиграмм. Она привязана к типу вещества и напрямую связана с весом человека и общим состоянием здоровья.

Первая помощь при отравлении

Если вы или кто-то из близких или коллег случайно отравился мышьяком, следует оказать немедленную помощь до приезда специалистов.

Действия проводятся по простому алгоритму:

  • Первое что надо сделать – это немедленно вызвать бригаду скорой помощи;
  • До приезда врачей пострадавшему дать рвотное средство, чтобы промыть желудок;
  • Следующим шагом станет прием абсорбента (например, молоко со взбитым белком или активированный уголь);
  • На живот пострадавшего положить горячую грелку;
  • При возможности приготовить специальный раствор, состоящий из одной ложки магнезии жженой, на 200 мл воды;
  • Ни в коем случае пострадавшему нельзя давать нюхать нашатырный спирт или кислое питье;
  • При появлении судорог разотрите конечности пострадавшему.

As – это сильный яд, который может нанести огромный вред.

Главным антидотом для мышьяка стал унитол. Это действенное противоядие имеющее свойство связывать его в безопасные соединения и позволяющее избавиться от химического элемента с мочевиной.

Снимать токсикологический эффект от мышьяка при работе на производстве помогают и своевременные меры профилактики.

Как предупредить отравление

В качестве профилактики отравления старайтесь избегать продуктов с его содержанием. На рабочих местах проводится герметизация производственных процессов и улучшение вентиляции.

Огромную роль в профилактике отравлений играет личная гигиена. На рабочем месте необходимо пользоваться респиратором. Или применять тампоны, из ваты, которые закладывают в уши и ноздри. После работы обязательно надо помыться. Помимо этого, следите и за своей спецодеждой. Держите ее в чистоте и выстиранной.

Обязательной профилактической мерой должен стать регулярный медицинский осмотр. Такие обследования рекомендуется проходить не реже двенадцати месяцев при постоянном контакте с препаратами, содержащими мышьяк.

Содержание статьи

МЫШЬЯК – химический элемент V группы периодической таблицы, относится к семейству азота. Относительная атомная масса 74,9216. В природе мышьяк представлен только одним стабильным нуклидом 75 As. Искусственно получены также более десяти его радиоактивных изотопов с периодом полураспада от нескольких минут до нескольких месяцев. Типичные степени окисления в соединениях –3, +3, +5. Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс; латинское название Arsenicum происходит от греческого «арсен» – сильный, мощный.

Исторические сведения.

Мышьяк относится к пяти «алхимическим» элементам, открытым в средние века (удивительно, но четыре из них – As, Sb, Bi и P находятся в одной группе периодической таблицы – пятой). В то же время соединения мышьяка были известны с древних времен, их применяли для производства красок и лекарств. Особенно интересно использование мышьяка в металлургии.

Несколько тысячелетий назад каменный век сменился бронзовым. Бронза – это сплав меди с оловом. Как полагают историки, первую бронзу отлили в долине Тигра и Евфрата, где-то между 30 и 25 вв. до н.э. В некоторых регионах выплавлялась бронза с особо ценными свойствами – она лучше отливалась и легче ковалась. Как выяснили современные ученые, это был сплав меди, содержащий от 1 до 7% мышьяка и не более 3% олова. Вероятно, поначалу при его выплавке спутали богатую медную руду малахит с продуктами выветривания некоторых тоже зеленых сульфидных медно-мышьяковых минералов. Оценив замечательные свойства сплава, древние умельцы затем уже специально искали мышьяковые минералы. Для поисков использовали свойство таких минералов давать при нагревании специфический чесночный запах. Однако со временем выплавка мышьяковой бронзы прекратилась. Скорее всего это произошло из-за частых отравлений при обжиге мышьяксодержащих минералов.

Конечно, мышьяк был известен в далеком прошлом лишь в виде его минералов. Так, в Древнем Китаем твердый минерал реальгар (сульфид состава As 4 S 4 , реальгар по-арабски означает «рудниковая пыль») использовали для резьбы по камню, однако при нагревании или на свету он «портился», так как превращался в As 2 S 3 . В 4 в. до н.э. Аристотель описал этот минерал под названием «сандарак». В I в. н.э. римский писатель и ученый Плиний Старший, и римский врач и ботаник Диоскорид описали минерал аурипигмент (сульфид мышьяка As 2 S 3). В переводе с латыни название минерала означает «золотая краска»: он использовался как желтый краситель. В 11 в. алхимики различали три «разновидности» мышьяка: так называемый белый мышьяк (оксид As 2 O 3), желтый мышьяк (сульфид As 2 S 3) и красный мышьяк (сульфид As 4 S 4). Белый мышьяк получался при возгонке примесей мышьяка при обжиге медных руд, содержащих этот элемент. Конденсируясь из газовой фазы, оксид мышьяка оседал в виде белого налета. Белый мышьяк использовали с древних времен для уничтожения вредителей, а также...

В 13 в. Альберт фон Больштедт (Альберт Великий) получил металлоподобное вещество, нагревая желтый мышьяк с мылом; возможно, это был первый образец мышьяка в виде простого вещества, полученный искусственно. Но это вещество нарушало мистическую «связь» семи известных металлов с семью планетами; вероятно, поэтому алхимики считали мышьяк «незаконнорожденным металлом». В то же время они обнаружили его свойство придавать меди белый цвет, что дало повод называть его «средством, отбеливающим Венеру (то есть медь)».

Мышьяк был однозначно идентифицирован как индивидуальное вещество в середине 17 в., когда немецкий аптекарь Иоганн Шрёдер получил его в сравнительно чистом виде восстановлением оксида древесным углем. Позднее французский химик и врач Никола Лемери получил мышьяк, нагревая смесь его оксида с мылом и поташом. В 18 в. мышьяк уже был хорошо известен как необычный «полуметалл». В 1775 шведский химик К.В.Шееле получил мышьяковую кислоту и газообразный мышьяковистый водород, а в 1789 А.Л.Лавуазье, наконец, признал мышьяк самостоятельным химическим элементом. В 19 в. были открыты органические соединения, содержащие мышьяк.

Мышьяк в природе.

В земной коре мышьяка немного – около 5·10 –4 % (то есть 5 г на тонну), примерно столько же, сколько германия, олова, молибдена, вольфрама или брома. Часто мышьяк в минералах встречается совместно с железом, медью, кобальтом, никелем.

Состав минералов, образуемых мышьяком (а их известно около 200), отражает «полуметаллические» свойства этого элемента, который может находиться как в положительной, так и в отрицательной степени окисления и соединяться со многими элементами; в первом случае мышьяк может играть роль металла (например, в сульфидах), во втором – неметалла (например, в арсенидах). Сложный состав ряда минералов мышьяка отражает его способность, с одной стороны, частично заменять в кристаллической решетке атомы серы и сурьмы (ионные радиусы S –2 , Sb –3 и As –3 близки и составляют соответственно 0,182, 0,208 и 0,191 нм), с другой – атомы металлов. В первом случае атомы мышьяка имеют скорее отрицательную степень окисления, во втором – положительную.

Электроотрицательность мышьяка (2,0) мала, но выше, чем у сурьмы (1,9) и у большинства металлов, поэтому степень окисления –3 наблюдается для мышьяка лишь в арсенидах металлов, а также в стибарсене SbAs и сростках этого минерала с кристаллами чистых сурьмы или мышьяка (минерал аллемонтит). Многие соединения мышьяка с металлами, судя по их составу, относятся скорее к интерметаллическим соединениям, а не к арсенидам; некоторые из них отличаются переменным содержанием мышьяка. В арсенидах может присутствовать одновременно несколько металлов, атомы которых при близком радиусе ионов замещают друг друга в кристаллической решетке в произвольных соотношениях; в таких случаях в формуле минерала символы элементов перечисляются через запятую. Все арсениды имеют металлический блеск, это непрозрачные, тяжелые минералы, твердость их невелика.

Примером природных арсенидов (их известно около 25) могут служить минералы лёллингит FeAs 2 (аналог пирита FeS 2), скуттерудит CoAs 2–3 и никельскуттерудит NiAs 2–3 , никелин (красный никелевый колчедан) NiAs, раммельсбергит (белый никелевый колчедан) NiAs 2 , саффлорит (шпейсовый кобальт) CoAs 2 и клиносаффлорит (Co,Fe,Ni)As 2 , лангисит (Co,Ni)As, сперрилит PtAs 2 , маухерит Ni 11 As 8 , орегонит Ni 2 FeAs 2 , альгодонит Cu 6 As. Из-за высокой плотности (более 7 г/см 3) многие из них геологи относят к группе «сверхтяжелых» минералов.

Наиболее распространенный минерал мышьяка – арсенопирит (мышьяковый колчедан) FeAsS можно рассматривать как продукт замещения серы в пирите FeS 2 атомами мышьяка (в обычном пирите тоже всегда есть немного мышьяка). Такие соединения называют сульфосолями. Аналогично образовались минералы кобальтин (кобальтовый блеск) CoAsS, глаукодот (Co,Fe)AsS, герсдорфит (никелевый блеск) NiAsS, энаргит и люцонит одинакового состава, но разного строения Cu 3 AsS 4 , прустит Ag 3 AsS 3 – важная серебряная руда, которую иногда называют «рубиновым серебром» из-за ярко-красного цвета, она часто встречается в верхних слоях серебряных жил, где найдены великолепные большие кристаллы этого минерала. Сульфосоли могут содержать и благородные металлы платиновой группы; это минералы осарсит (Os,Ru)AsS, руарсит RuAsS, ирарсит (Ir,Ru,Rh,Pt)AsS, платарсит (Pt,Rh,Ru)AsS, холлингуортит (Rd,Pt,Pd)AsS. Иногда роль атомов серы в таких двойных арсенидах играют атомы сурьмы, например, в сейняйоките (Fe,Ni)(Sb,As) 2 , арсенопалладините Pd 8 (As,Sb) 3 , арсенполибазите (Ag,Cu) 16 (Ar,Sb) 2 S 11 .

Интересно строение минералов, в которых мышьяк присутствует одновременно с серой, но играет скорее роль металла, группируясь вместе с другими металлами. Таковы минералы арсеносульванит Cu 3 (As,V)S 4 , арсеногаухекорнит Ni 9 BiAsS 8 , фрейбергит (Ag,Cu,Fe) 12 (Sb,As) 4 S 13 , теннантит (Cu,Fe) 12 As 4 S 13 , аргентотеннантит (Ag,Cu) 10 (Zn,Fe) 2 (As,Sb) 4 S 13 , голдфилдит Cu 12 (Te,Sb,As) 4 S 13 , жиродит (Cu,Zn,Ag) 12 (As,Sb) 4 (Se,S) 13 . Можно представить себе, какое сложное строение имеет кристаллическая решетка всех этих минералов.

Однозначно положительную степень окисления мышьяк имеет в природных сульфидах – желтом аурипигменте As 2 S 3 , оранжево-желтом диморфите As 4 S 3 , оранжево-красном реальгаре As 4 S 4 , карминово-красном гетчеллите AsSbS 3 , а также в бесцветном оксиде As 2 O 3 , который встречается в виде минералов арсенолита и клаудетита с разной кристаллической структурой (они образуются в результате выветривания других мышьяковых минералов). Обычно эти минералы встречаются в виде небольших вкраплений. Но в 30-е годы 20 в. в южной части Верхоянского хребта были найдены огромные кристаллы аурипигмента размером до 60 см и массой до 30 кг.

В природных солях мышьяковой кислоты H 3 AsO 4 – арсенатах (их известно около 90) степень окисления мышьяка – +5; примером могут служить ярко-розовый эритрин (кобальтовый цвет) Co 3 (AsO 4) 2 ·8H 2 O, зеленые аннабергит Ni 3 (AsO 4) 2 ·8H 2 O, скородит Fe III AsO 4 ·2H 2 O и симплезит Fe II 3 (AsO 4) 2 ·8H 2 O, буро-красный гаспарит (Ce,La,Nd)ArO 4 , бесцветные гёрнесит Mg 3 (AsO 4) 2 ·8H 2 O, рузвельтит BiAsO 4 и кёттигит Zn 3 (AsO 4) 2 ·8H 2 O, а также множество основных солей, например, оливенит Cu 2 AsO 4 (OH), арсенобисмит Bi 2 (AsO 4)(OH) 3 . А вот природные арсениты – производные мышьяковистой кислоты H 3 AsO 3 очень редки.

В центральной Швеции есть знаменитые лангбановские железо-марганцевые карьеры, в которых нашли и описали более 50 образцов минералов, представляющих собой арсенаты. Некоторые из них нигде больше не встречаются. Они образовались когда-то в результате реакции мышьяковой кислоты H 3 AsO 4 с пирокроитом Mn(OH) 2 при не очень высоких температурах. Обычно же арсенаты – продукты окисления сульфидных руд. Они, как правило, не имеют промышленного применения, но некоторые из них очень красивые и украшают минералогические коллекции.

В названиях многочисленных минералов мышьяка можно встретить топонимы (Лёллинг в Австрии, Фрайберг в Саксонии, Сейняйоки в Финляндии, Скуттеруд в Норвегии, Аллемон во Франции, канадский рудник Лангис и рудник Гетчелл в Неваде, штат Орегон в США и др.), имена геологов, химиков, политических деятелей и т.п. (немецкий химик Карл Раммельсберг, мюнхенский торговец минералами Вильям Маухер, владелец шахты Иоганн фон Герсдорф, французский химик Ф.Клоде, английские химики Джон Пруст и Смитсон Теннант, канадский химик Ф.Л.Сперри, президент США Рузвельт и др.), названия растений (так, название минерала саффлорита произошело от шафрана), начальные буквы названий элементов – мышьяка, осмия, рутения, иридия, палладия, платины, греческие корни («эритрос» – красный, «энаргон» – видимый, «литос» – камень) и т.д. и т.п.

Интересно старинное название минерала никелина (NiAs) – купферникель. Средневековые немецкие горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, от нем. Kupfer – медь) – «чертову медь», «фальшивую медь». Медно-красные кристаллы этой руды внешне очень походили на медную руду; ее применяли в стекловарении для окрашивания стекол в зеленый цвет. А вот медь из нее никому получить не удавалось. Эту руду в 1751 исследовал шведский минералог Аксель Кронштедт и выделил из нее новый металл, назвав его никелем.

Поскольку мышьяк химически достаточно инертен, он встречается и в самородном состоянии – в виде сросшихся иголочек или кубиков. Такой мышьяк обычно содержит от 2 до 16% примесей – чаще всего это Sb, Bi, Ag, Fe, Ni, Co. Его легко растереть в порошок. В России самородный мышьяк геологи находили в Забайкалье, в Амурской области, встречается он и в других странах.

Уникален мышьяк тем, что он встречается повсюду – в минералах, горных породах, почве, воде, растениях и животных, недаром его называют «вездесущным». Распределение мышьяка по разным регионам земного шара во многом определялось в процессах формирования литосферы летучестью его соединений при высокой температуре, а также процессами сорбции и десорбции в почвах и осадочных породах. Мышьяк легко мигрирует, чему способствует достаточно высокая растворимость некоторых его соединений в воде. Во влажном климате мышьяк вымывается из почвы и уносится грунтовыми водами, а затем – реками. Среднее содержание мышьяка в реках – 3 мкг/л, в поверхностных водах – около 10 мкг/л, в воде морей и океанов – всего около 1 мкг/л. Это объясняется сравнительно быстрым осаждением его соединений из воды с накоплением в донных отложениях, например, в железомарганцевых конкрециях.

В почвах содержание мышьяка составляет обычно от 0,1 до 40 мг/кг. Но в области залегания мышьяковых руд, а также в вулканических районах в почве может содержаться очень много мышьяка – до 8 г/кг, как в некоторых районах Швейцарии и Новой Зеландии. В таких местах гибнет растительность, а животные болеют. Это характерно для степей и пустынь, где мышьяк не вымывается из почвы. Обогащены по сравнению со средним содержанием и глинистые породы – в них содержится вчетверо больше мышьяка, чем в среднем. В нашей стране предельно допустимой концентрацией мышьяка в почве считается 2 мг/кг.

Мышьяк может выноситься из почвы не только водой, но и ветром. Но для этого он должен сначала превратиться в летучие мышьякорганические соединения. Такое превращение происходит в результате так называемого биометилирования – присоединения метильной группы с образованием связи C–As; этот ферментативный процесс (он хорошо известен для соединений ртути) происходит при участии кофермента метилкобаламина – метилированного производного витамина В 12 (он есть и в организме человека). Биометилирование мышьяка происходит как в пресной, так и в морской воде и приводит к образованию мышьякорганических соединений – метиларсоновой кислоты CH 3 AsO(OH) 2 , диметиларсиновой (диметилмышьяковой, или какодиловой) кислоты (CH 3) 2 As(O)OH, триметиларсина (CH 3) 3 As и его оксида (CH 3) 3 As = O, которые также встречаются в природе. С помощью 14 С-меченого метилкобаламина и 74 As-меченого гидроарсената натрия Na 2 HAsO 4 было показано, что один из штаммов метанобактерий восстанавливает и метилирует эту соль до летучего диметиларсина. В результате в воздухе сельских районов содержится в среднем 0,001 – 0,01 мкг/м 3 мышьяка, в городах, где нет специфических загрязнений – до 0,03 мкг/м 3 , а вблизи источников загрязнения (заводы по выплавке цветных металлов, электростанции, работающие на угле с высоким содержание мышьяка, и др.) концентрация мышьяка в воздухе может превысить 1 мкг/м 3 . Интенсивность выпадения мышьяка в районах расположения промышленных центров составляет 40 кг/км 2 в год.

Образование летучих соединений мышьяка (триметиларсин, например, кипит всего при 51° С) вызывало в 19 в. многочисленные отравления, поскольку мышьяк содержался в штукатурке и даже в зеленой краске для обоев. В виде краски раньше использовали зелень Шееле Cu 3 (AsO 3) 2 · n H 2 O и парижскую, или швейфуртскую зелень Cu 4 (AsO 2) 6 (CH 3 COO) 2 . В условиях высокой влажности и появления плесени из такой краски образуются летучие мышьякорганические производные. Предполагают, что этот процесс мог быть причиной медленного отравления Наполеона в последние годы его жизни (как известно, мышьяк был найден в волосах Наполеона спустя полтора столетия после его смерти).

Мышьяк в заметных количествах содержится в некоторых минеральных водах. Российские нормативы устанавливают, что в лечебно-столовых минеральных водах мышьяка должно быть не более 700 мкг/л. В Джермуке его может быть в несколько раз больше. Выпитые один-два стакана «мышьяковой» минеральной воды человеку вреда не принесут: чтобы смертельно отравиться, надо выпить сразу литров триста... Но понятно, что такую воду нельзя пить постоянно вместо обычной воды.

Химики выяснили, что мышьяк в природных водах может находиться в разных формах, что существенно с точки зрения его анализа, способов миграции, а также разной токсичности этих соединений; так, соединения трехвалентного мышьяка в 25–60 раз токсичнее, чем пятивалентного. Соединения As(III) в воде присутствуют обычно в форме слабой мышьяковистой кислоты H 3 AsO 3 (рК а = 9,22), а соединения As(V) – в виде значительно более сильной мышьяковой кислоты H 3 AsO 4 (рК а = 2,20) и ее депротонированых анионов H 2 AsO 4 – и HAsO 4 2– .

В живом веществе мышьяка в среднем содержится 6·10 –6 %, то есть 6 мкг/кг. Некоторые морские водоросли способны концентрировать мышьяк в такой степени, что становятся опасными для людей. Более того, эти водоросли могут расти и размножаться в чистых растворах мышьяковистой кислоты. Такие водоросли используются в некоторых азиатских странах в качестве средства против крыс. Даже в чистых водах норвежских фьордов водоросли могут содержать мышьяк в количестве до 0,1 г/кг. У человека мышьяк содержится в мозговой ткани и в мышцах, накапливается он в волосах и ногтях.

Свойства мышьяка.

Хотя с виду мышьяк напоминает металл, он все же скорее является неметаллом: не образует солей, например, с серной кислотой, но сам является кислотообразующим элементом. Поэтому этот элемент часто называют полуметаллом. Мышьяк существует в нескольких аллотропных формах и в этом отношении весьма напоминает фосфор. Самая устойчивая из них – серый мышьяк, весьма хрупкое вещество, которое на свежем изломе имеет металлический блеск (отсюда название «металлический мышьяк»); его плотность 5,78 г/см 3 . При сильном нагревании (до 615° С) он возгоняется без плавления (такое же поведение характерно для иода). Под давлением 3,7 МПа (37 атм) мышьяк плавится при 817° С, что значительно выше температуры возгонки. Электропроводность серого мышьяка в 17 раз меньше, чем у меди, но в 3,6 раза выше, чем у ртути. С повышением температуры его электропроводность, как и у типичных металлов, снижается – примерно в такой же степени, как у меди.

Если пары мышьяка очень быстро охладить до температуры жидкого азота (–196° С), получается прозрачное мягкое вещество желтого цвета, напоминающее желтый фосфор, его плотность (2,03 г/см 3) значительно ниже, чем у серого мышьяка. Пары мышьяка и желтый мышьяк состоят из молекул As 4 , имеющих форму тетраэдра – и здесь аналогия с фосфором. При 800° С начинается заметная диссоциация паров с образованием димеров As 2 , а при 1700° С остаются только молекулы As 2 . При нагревании и под действием ультрафиолета желтый мышьяк быстро переходит в серый с выделением тепла. При конденсации паров мышьяка в инертной атмосфере образуется еще одна аморфная форма этого элемента черного цвета. Если пары мышьяка осаждать на стекле, образуется зеркальная пленка.

Строение внешней электронной оболочки у мышьяка такое же, как у азота и фосфора, но в отличие от них, у него 18 электронов на предпоследней оболочке. Как и фосфор, он может образовать три ковалентные связи (конфигурация 4s 2 4p 3), и на атоме As остается неподеленная пара. Знак заряда на атоме As в соединениях с ковалентными связями зависит от электроотрицательности соседних атомов. Участие неподеленной пары в комплексообразовании для мышьяка значительно затруднено по сравнению с азотом и фосфором.

Если в атоме As задействованы d-орбитали, возможно распаривание 4s-электронов с образованием пяти ковалентных связей. Такая возможность практически осуществляется только в соединении с фтором – в пентафториде AsF 5 (известен и пентахлорил AsCl 5 , но он исключительно нестоек и быстро разлагается даже при –50° С).

В сухом воздухе мышьяк устойчив, но во влажном тускнеет и покрывается черным оксидом. При возгонке пары мышьяка легко сгорают на воздухе голубым пламенем с образованием тяжелых белых паров мышьяковистого ангидрида As 2 O 3 . Этот оксид – один из наиболее распространенных мышьяксодержащих реагентов. Он обладает амфотерными свойствами:

As 2 O 3 + 6HCl ® 2AsCl 3 + 3H 2 O,

2 O 3 + 6NH 4 OH ® 2(NH 4) 3 AsO 3 + 3H 2 O.

При окислении As 2 O 3 образуется кислотный оксид – мышьяковый ангидрид:

As 2 O 3 + 2HNO 3 ® As 2 O 5 + H 2 O + NO 2 + NO.

При его взаимодействии с содой получают гидроарсенат натрия, который находит применение в медицине:

As 2 O 3 + 2Na 2 CO 3 + H 2 O ® 2Na 2 HAsO 4 + 2CO 2 .

Чистый мышьяк достаточно инертен; вода, щелочи и кислоты, не обладающие окислительными свойствами, на него не действуют. Разбавленная азотная кислота окисляет его до ортомышьяковистой кислоты H 3 AsO 3 , а концентрированная – до ортомышьяковой H 3 AsO 4:

3As + 5HNO 3 + 2H 2 O ® 3H 3 AsO 4 + 5NO.

Аналогично реагирует и оксид мышьяка(III):

3As 2 O 3 + 4HNO 3 + 7H 2 O ® 6H 3 AsO 4 + 4NO.

Мышьяковая кислота является кислотой средней силы, чуть слабее фосфорной. В отличие от нее, мышьяковистая кислота очень слабая, по своей силе соответствующая борной кислоте H 3 BO 3 . В ее растворах существует равновесие H 3 AsO 3 HAsO 2 + H 2 O. Мышьяковистая кислота и ее соли (арсениты) – сильные восстановители:

HAsO 2 + I 2 + 2H 2 O ® H 3 AsO 4 + 2HI.

Мышьяк реагирует с галогенами и серой. Хлорид AsCl 3 – бесцветная маслянистая жидкость, дымящая на воздухе; водой гидролизуется: AsCl 3 + 2H 2 O ® HAsO 2 + 3HCl. Известны бромид AsBr 3 и иодид AsI 3 , которые также разлагаются водой. В реакциях мышьяка с серой образуются сульфиды различного состава – вплоть до Ar 2 S 5 . Сульфиды мышьяка растворяются в щелочах, в растворе сульфида аммония и в концентрированной азотной кислоте, например:

As 2 S 3 + 6KOH ® K 3 AsO 3 + K 3 AsS 3 + 3H 2 O,

2 S 3 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 3 ,

2 S 5 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 4 ,

As 2 S 5 + 40HNO 3 + 4H 2 O ® 6H 2 AsO 4 + 15H 2 SO 4 + 40NO.

В этих реакциях образуются тиоарсениты и тиоарсенаты – соли соответствующих тиокислот (аналогичных тиосерной кислоте).

В реакции мышьяка с активными металлами образуются солеобразные арсениды, которые гидролизуются водой Особенно быстро реакция идет в кислой среде с образованием арсина: Ca 3 As 2 + 6HCl ® 3CaCl 2 + 2AsH 3 . Арсениды малоактивных металлов – GaAs, InAs и др. имеют алмазоподобную атомную решетку. Арсин – бесцветный очень ядовитый газ без запаха, но примеси придают ему запах чеснока. Арсин медленно разлагается на элементы уже при комнатной температуре и быстро – при нагревании.

Мышьяк образует множество мышьякорганических соединений, например, тетраметилдиарсин (CH 3) 2 As–As(CH 3) 2 . Еще в 1760 директор Сервской фарфоровой фабрики Луи Клод Каде де Гассикур, перегоняя ацетат калия с оксидом мышьяка(III), неожиданно получил содержащую мышьяк дымящуюся жидкость с отвратительным запахом, которую назвали аларсином, или жидкостью Каде. Как выяснили впоследствии, в этой жидкости содержались впервые полученные органические производные мышьяка: так называемая окись какодила, которая образовалась в результате реакции

4CH 3 COOK + As 2 O 3 ® (CH 3) 2 As–O–As(CH 3) 2 + 2K 2 CO 3 + 2CO 2 , и дикакодил (CH 3) 2 As–As(CH 3) 2 . Какодил (от греч. «какос» – дурной) был одним из первых радикалов, открытых в органических соединениях.

В 1854 парижский профессор химии Огюст Каур синтезировал триметиларсин действием метилиодида на арсенид натрия: 3CH 3 I + AsNa 3 ® (CH 3) 3 As + 3NaI.

В последующем для синтезов использовали трихлорид мышьяка, например,

(CH 3) 2 Zn + 2AsCl 3 ® 2(CH 3) 3 As + 3ZnCl 2 .

В 1882 были получены ароматические арсины действием металлического натрия на смесь арилгалогенидов и трихлорида мышьяка: 3C 6 H 5 Cl + AsCl 3 + 6Na ® (C 6 H 5) 3 As + 6NaCl. Наиболее интенсивно химия органических производных мышьяка развивалась в 20-е годы 20 в., когда у некоторых из них были обнаружены противомикробное, а также раздражающее и кожно-нарывное действие. В настоящее время синтезированы десятки тысяч мышьякорганических соединений.

Получение мышьяка.

Мышьяк получают, в основном, как побочный продукт переработки медных, свинцовых, цинковых и кобальтовых руд, а также при добыче золота. Некоторые полиметаллические руды содержат до 12% мышьяка. При нагревании таких руд до 650–700° С в отсутствие воздуха мышьяк возгоняется, а при нагревании на воздухе образуется летучий оксид As 2 O 3 – «белый мышьяк». Его конденсируют и нагревают с углем, при этом происходит восстановление мышьяка. Получение мышьяка – вредное производство. Раньше, когда слово «экология» было известно лишь узким специалистам, «белый мышьяк» выпускали в атмосферу, и он оседал на соседних полях и лесах. В отходящих газах мышьяковых заводов содержится от 20 до 250 мг/м 3 As 2 O 3 , тогда как обычно в воздухе содержится примерно 0,00001мг/м 3 . Среднесуточной допустимой концентрацией мышьяка в воздухе считают всего 0,003 мг/м 3 . Парадоксально, но и сейчас намного сильнее загрязняют окружающую среду мышьяком не заводы по его производству, а предприятия цветной металлургии и электростанции, сжигающие каменный уголь. В донных осадках вблизи медеплавильных заводов содержится огромное количество мышьяка – до 10 г/кг. Мышьяк может попасть в почву и с фосфорными удобрениями.

И еще один парадокс: получают мышьяка больше, чем его требуется; это довольно редкий случай. В Швеции «ненужный» мышьяк вынуждены были даже захоранивать в железобетонных контейнерах в глубоких заброшенных шахтах.

Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке.

Определение мышьяка.

Качественной реакцией на мышьяк является осаждение желтого сульфида As 2 S 3 из солянокислых растворов. Следы определяют реакцией Марша или методом Гутцейта: полоски бумаги, смоченные HgCl 2 , темнеют в присутствии арсина, который восстанавливает сулему до ртути.

В последние десятилетия разработаны различные чувствительные методы анализа, с помощью которых можно количественно определить ничтожные концентрации мышьяка, например, в природных водах. В их числе пламенная атомно-абсорбционная спектрометрия, атомно-эмиссионная спектрометрия, масс-спектрометрия, атомно-флуоресцентная спектрометрия, нейтронный активационный анализ... Если мышьяка в воде очень мало, может потребоваться предварительное концентрирование образцов. Используя такое концентрирование, группа харьковских ученых из Национальной академии наук Украины разработала в 1999 экстракционно-рентгенофлуоресцентный метод определения мышьяка (а также селена) в питьевой воде с чувствительностью до 2,5–5 мкг/л.

Для раздельного определения соединений As(III) и As(V) их предварительно отделяют друг от друга с помощью хорошо известных экстракционных и хроматографических методов, а также используя селективное гидрирование. Экстракцию обычно осуществляют с помощью дитиокарбамата натрия или пирролидиндитиокарбамата аммония. Эти соединения образуют с As(III) нерастворимые в воде комплексы, которые можно извлечь хлороформом. Затем с помощью окисления азотной кислотой мышьяк можно снова перевести в водную фазу. Во второй пробе с помощью восстановителя переводят арсенат в арсенит, а затем производят аналогичную экстракцию. Так определяют «общий мышьяк», а затем вычитанием первого результата из второго определяют As(III) и As(V) порознь. Если в воде есть органические соединения мышьяка, их обычно переводят в метилдииодарсин CH 3 AsI 2 или в диметилиодарсин (CH 3) 2 AsI, которые определяют тем или иным хроматографическим методом. Так, с помощью высокоэффективной жидкостной хроматографии можно определить нанограммовые количества вещества.

Многие мышьяковые соединения можно анализировать так называемым гидридным методом. Он заключается в селективном восстановлении анализируемого вещества в летучий арсин. Так, неорганические арсениты восстанавливаются до AsH 3 при рН 5 – 7, а при рН

Чувствителен и нейтронно-активационный метод. Он заключается в облучении образца нейтронами, при этом ядра 75 As захватывают нейтроны и превращаются в радионуклид 76 As, который обнаруживается по характерной радиоактивности с периодом полураспада 26 часов. Так можно обнаружить до 10 –10 % мышьяка в образце, т.е. 1 мг на 1000 т вещества

Применение мышьяка.

Около 97% добываемого мышьяка используют в виде его соединений. Чистый мышьяк применяют редко. В год во всем мире получают и используют всего несколько сотен тонн металлического мышьяка. В количестве 3% мышьяк улучшает качество подшипниковых сплавов. Добавки мышьяка к свинцу заметно повышают его твердость, что используется при производстве свинцовых аккумуляторов и кабелей. Малые добавки мышьяка повышают коррозионную устойчивость и улучшают термические свойства меди и латуни. Мышьяк высокой степени очистки применяют в производстве полупроводниковых приборов, в которых его сплавляют с кремнием или с германием. Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Уже давно заметили, что если в расплавленный свинец добавить немного мышьяка, то при отливке дроби получаются шарики правильной сферической формы. Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки. Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов. И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Более широкое применение имеют различные соединения мышьяка, которые ежегодно производятся десятками тысяч тонн. Оксид As 2 O 3 применяют в стекловарении в качестве осветлителя стекла. Еще древним стеклоделам было известно, что белый мышьяк делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров.

Соединения мышьяка применяют в качестве антисептика для предохранения от порчи и консервирования шкур, мехов и чучел, для пропитки древесины, как компонент необрастающих красок для днищ судов. В этом качестве используют соли мышьяковой и мышьяковистой кислот: Na 2 HAsO 4 , PbHAsO 4 , Ca 3 (AsO 3) 2 и др. Биологическая активность производных мышьяка заинтересовала ветеринаров, агрономов, специалистов санэпидслужбы. В итоге появились мышьяксодержащие стимуляторы роста и продуктивности скота, противоглистные средства, лекарства для профилактики болезней молодняка на животноводческих фермах. Соединения мышьяка (As 2 O 3 , Ca 3 As 2 , Na 3 As, парижская зелень) используются для борьбы с насекомыми, грызунами, а также с сорняками. Раньше такое применение было широко распространено, особенно при обработке фруктовых деревьев, табачных и хлопковых плантаций, для избавления домашнего скота от вшей и блох, для стимулирования прироста в птицеводстве и свиноводстве, а также для высушивания хлопчатника перед уборкой. Еще в Древнем Китае оксидом мышьяка обрабатывали рисовые посевы, чтобы уберечь их от крыс и грибковых заболеваний и таким образом поднять урожай. А в Южном Вьетнаме американские войска применяли в качестве дефолианта какодиловую кислоту («Эйджент блю»). Сейчас из-за ядовитости соединений мышьяка их использование в сельском хозяйстве ограничено.

Важные области применения соединений мышьяка – производство полупроводниковых материалов и микросхем, волоконной оптики, выращивание монокристаллов для лазеров, пленочная электроника. Для введения небольших строго дозированных количеств этого элемента в полупроводники применяют газообразный арсин. Арсениды галлия GaAs и индия InAs применяют при изготовлении диодов, транзисторов, лазеров.

Ограниченное применение находит мышьяк и в медицине. Изотопы мышьяка 72 As, 74 As и 76 As с удобными для исследований периодами полураспада (26 ч, 17,8 сут. и 26,3 ч соответственно) применяются для диагностики различных заболеваний.

Илья Леенсон